CUK Converter for Power Factor Correction Using Moth Flame Optimization-PI Controller
نویسندگان
چکیده
منابع مشابه
Power Factor Correction in Permanent Magnet Brushless Dc Motor Drive Using Single-phase Cuk Converter
Permanent magnet brushless DC motor (PMBLDCM) drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source in...
متن کاملDesign and Analysis of Predictive control using PI controller for Boost Converter with Active Power Factor Correction
Power factor correction of boost converter is done by using predictive control strategy. In this paper predictive control algorithm is presented based on this algorithm all of the duty cycles required to achieve unity power factor in one half line period are calculated in advance by proportional Integral (PI) controller, the simulation results show that the proposed predictive strategy for PFC ...
متن کاملA Bridgeless Cuk Converter for Power Factor Correction and Speed Control in BLDC Motor
ABSTRACT: In this paper a bridgeless Cuk rectifier is used for Power factor correction (PFC) for a BLDC motor. Bridgeless Cuk converter has only two semiconductor switches in the current flowing path. During each interval of the switching cycle it result in less conduction losses and an improved thermal management compared to the conventional Cuk PFC rectifier. To achieve almost unity power fac...
متن کاملOptimal Reactive Power Dispatch Using Moth-Flame Optimization Algorithm
This paper describes a newly developed Moth-Flame optimization algorithm to deal with optimal reactive power dispatch problem. The prime intention of reactive power dispatch problem is to curtail the real power loss and control the bus voltages in power system network. The Moth-Flame algorithm is one of the most powerful and robust new global optimization algorithms in engineering. The primary ...
متن کاملMaximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions
The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2020
ISSN: 1757-899X
DOI: 10.1088/1757-899x/982/1/012020